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In applied problems there arises frequently the necessity for the evalu- 
ation of roots of algebraic equations. In the present note there are Cbn- 
sidered certain methods for the separation and evaluation of roots of 
such equations. 

1. The well-known methods for lo,cating the roots of an algebraic equa- 
tion [1,21, such as the classica! methods of Sture and Budan-Fourier, 
yield solutions to the problem of t,he determination of the number of 
roots lying within an arbitrarily given region (or within an interval of 

the real axis). 

A problem that is in a certain sense the inverse of the above problem, 
is that of finding regions (or intervals) each of which will contain 
exactly one root, independently of the specialization of the coefficients 

of the equation. 

Let us consider the following equation with real coefficients: 

all of whose roots are real, h, < A, < . . . < A,. 

The problem consists of ffnding n - 1 rational functions h(al, :. . , an) 
such that any definite relation ~1~ < I+ < . . . < p,_ 1, that may arise 
for any particular choice of the a’s, will imply the following inequal- 
ities 

That is, if there exist such functions ~1 then they represent “movable” 
boundaries for the roots; in this case the structure of the functions p 
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may change only with the degree of the equations, We shall show that such 
functions u exist at least for third degree equations 

f cz) f 9 .+- +: + nzz f a3 := 0 (1.2) 

Indeed, let us choose for the functions & the following functions of the 

coefficients of Equation (1.2): 

If we denote by A,, A,, A3 the sequence of the principal minors in 
ascending order of the Hankel matrix of Equation (1.2) 

then one can show the validity of the following identities 

If all the roots of the Equation 

Ai> 0 

IbY =(;I‘ -- p”j p 

(1.2) are real, then 

(i == 1, 2, 3) 

(1.4) 

(1.5) 

and from (1.4) it follows that 

<b<“, if tt’<pL” 

C&C”, if Ii’ <IA’ 
if 1:’ ‘.;_ 1-1,“. 

We note that the denominators in (1.3) differ only in sign from A, and 
A,, and that they do not vanish, in view of (1.5). 

AA 

($.3) 

It should be mentioned that the expressions chosen for vfl and p’ co- 

incide with the values of double or triple roots of Equation (1.2) when- 
ever such roots exist. The latter are found by means of simple rational 
operations; p’* is found by solving for the system of equations 

f (PL) = 0, f’ (EL) = 0, PLf’ w = 0 

in which the different powers of w are treated as independent variables: 
in’ is found from the equation f*‘(p) = 0. The expression for a root of 
multiplicity k of an nth degree equation can be found in an analogous wag_. 
The corresponding process is. however, not single-valued, the value of 
the multiple root can be determined to within an additive term that will 
go to zero together with the resultants R( f, f’), R(f’, f’), . . . , which 
correspond to the multiplicity of the root. 
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This circumstance complicates the application of the described pro- 

cedure in case n ;b 4. 

2. In automatic control theory it is frequently required to find the 

trajectories of the roots of the characteristic equation constructed for 
a linear system with a varying parameter. Sometimes it is neoeasary to 

find the roots of an algebraic equation for the application of a Certain 

analytic algorithm. 

In such cases, it is convenient to have a sufficiently simple and 
precise analytic relation ‘between the roots and coefficients of the given 
equation. 

For the derivation of such a relation, one can use a procedure similar 

to the method of a small parameter of Poincard. The only difference be- 
tween its use for differential and algebraic equations is that the ex- 
pansion of the solution of an algebraic equation into a power series of 
the parameter can be accomplished directly by evaluating the derivatives 
whose existence is guaranteed. One can determine the regions Of 
analyticity of the solution, and hence the regions of convergence of the 

series representing the solution. 

bet us consider an algebraic equation whose real ooefficieats depend 

on a parameter 

Differentiating the left-hand side with respect to the parameter, we 

obtain 

It can be seen that the sequence of derivatives a&: a2z/&‘, . .,. 
can be evaJuated for arbitrary values p* for which z*, the root of the 
equation f(c(“, z’) = 0, is finite*, end for which fZ’(~*, to) # 0. Hence 
it follows that the series 

z (p) f= 2” -1 ($-)‘(p - p”) + 2+($qa (f.L - py -I- . . . 

l The critical algebraic points which are, branch points of the solution 
are the only singular points that the solutions of the algebraic equa- 
tion in this case can have; the existence of poles is excluded by the 
requirement that z” be finite. 
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converges and represents an nnalytic function for all in for which the 
resultant R(f, f’) retains the sign which it has when II = IA’. 

Other parameters on which the coefficients of the equation might de- 
pend must be considered as fixed quantities. Such parameters may be, in 
particular, the coefficients themselves. It is desirable to select for 
H’ a value that will simplify as much as possible the evaluation of 2’. 

IYe shall now demonstrate the described procedure on an example in- 

volving the cubic equation 

23 -I- p: + q zzz 0 

Considering q as a parameter, and starting out from its zero value, 

we obtain 

The series converge when R(f, f’) E - 4p3 + 279’ < 0, p > 0 (or else 
when - 4p3 t 2792 > 0, p < 0). The convergence takes place faster if the 

inequality pR > 0 is satisfied with a greater margin. 

3. In one of the more effective procedures for evaluating the roots 
of an algebraic equation, the method of Lobachevskii, it is necessary to 

compute the symmetric functions of the powers of the roots in terms of 
the coefficients of the equation. For this purpose there is usually 

suggested an algorithmic process, which leads, however, to a rather com- 

plicated result. 

Making use of the recurrence relations of Newton, one can Prove the 
validity of the following simple matrix representations for the required 

symmetric functions. 

For a second degree polynomial one has 

ht” + kSk = 0 ff2 al 1 . . . , 

0 0 agal. . . 
. . , . . . k 

For a third degree polynomial one obtains 
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al P 0.0 ). * 

2aa al 1 0 . - . 

3aa aS 01 1 . . . 
0 as as al . . . 

. . . . . . . * . k 

= 
0 as us I . . 

0 0 as. 1 . 

. . . . I . k 

. . 1 8 . . . &_, 

..I . . . . . < k 

For a polynomial of the r&h degree this representation has the form 

(The subscript indicates the order of the determinants.) 

The easily recognized forms of the above given determinants indicate 
how one cart obtain more general results for nth degree polynomials. 
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