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In applied problems there arises frequently the necessity for the evalu-
ation of roots of algebraic equations. In the present note there are con-
sidered certain methods for the separation and evaluation of roots of
such equations.

1. The well-known methods for locating the roots of an algebraic equa-
tion [1,2], such as the classical methods of Sturm and Budan-Fourier,
yield solutions to the problem of the determination of the number of
roots lying within an arbitrarily given region (or within an interval of
the real axis).

A problem that is in a certain sense the inverse of the above problenm,
is that of finding regions (ar intervals) each of which will contain
exactly one root, independently of the spe€ialization of the coefficients
of the equation.

Let us consider the following equation with real coefficients:

2 aEt T 4-a, =0
all of whose roots are real, A} <A, < ... <A
The problem consists of finding n - 1 raiional functions uv(al.;..,an)
such that any definite relation Hy < Hy < ... < H,_ 1, that may arise

for any particular choice of the ¢'s, will imply the following inequal-
ities
— oo LA < ThpTpa<l. . <Ay <My <h, oo (t.1)

That is, if there exist such func¢tions p then they represent "movable"
boundaries for the roots; in this case the structure of the funé¢tions p
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may change only with the degree of the equations. We shall show that such
functions p exist at least for third degree equations

F(z) =28 -} a3z -+ agz -+ a3 = 0 (1.2)

Indeed, let us choose for the functions p the following functions of the
coefficients of Equation (1.2):

a ayas — Qa:
M’ o ".“‘ s : “” == “:ﬁ—‘ : ("13)
3 bay — 2a,*

I1f we denote by Al. sz A3 the sequence of the principal minors in
ascending order of the Hankel matrix of Equation (1.2)

3 Sy 83 {i
$1 8y I3
8y 83 Sq l
then one can show the validity of the following identities

AyAs
A (1.4)

. N , \
P =W =) 33, )= —pY)

If all the roots of the Equation (1.2) are real, then
A (i==1,2,3) (1.5)

and from (1.4) it follows that

—oo <A CThe TP ThyLoe,  1F ' <Tp”
—oo <P <R W <Chaloo, AT
p,‘ 2= }\.2 == p,”, if l‘l" - P’ .

We note that the denominators inm (1.3) differ only in sign Irom Al and
Az' and that they do not vanish, in view of (1.5).

It should be mentionmed that the expressions chosen for p” and p’ co-
incide with the values of double or triple roots of Equation (1.2) when-
ever such roots exist. The latter are found by means of simple rational
operations; p'' is found by solving for the system of equations

fw=0 fw=90  pf=0

in which the different powers of | are treated as independent variables;
p’ is found from the equation f'?u) = 0. The expression for a root of
multiplicity k of an nth degree equation can be found in an analogous way.
The corresponding process is, however, not single-valued, the value of
the multiple root can be determined to within an additive term that will
go to zero together with the resultants R(f, f), R(f', '), ..., which
correspond to the multiplicity of the root.



Roots of an algebraic equation 1165

This circumstance complicates the application of the described pro-
cedure in case n > 4.

2. In automatic control theory it is frequently required to find the
trajectories of the roots of the characteristic equation constructed for
a linear system with a varying parameter. Sometimes it is necessary to
find the roots of an algebraic equation for the application of a certain
analytic algorithm.

In such cases, it is convenient to have a sufficiently simple and
precise analytic relation between the roots and coefficients of the given
equation.

For the derivation of such a relation, one can use a procedure similar
to the method of a small parameter of Poincaré. The only difference be-
tween its use for differential and algebraic equations is that the ex-
pansion of the solution of an algebraic equation into a power series of
the parameter can be accomplished directly by evaluating the derivatives
whose existence is guaranteed. One can determine the regions of
analyticity of the solution, and hence the regions of convergence of the
series representing the solution.

Let us consider an algebraic equation whose real coefficients depend
on a parameter

fp, 2)=0

Differentiating the left-hand side with respect to the parameter, we
obtain

dz 8%z
gt =0 1 () F 2 = 0.

It can be seen that the sequence of derivatives /! Pl ...
can be evaluated for arbitrary values u for which z°, the root of the
equation f(u°, :°) = 0, is finite*, and for which‘fz °, :°) # 0. Hence

it follows that the series

2=+ () w0 +3r(om) w—wrt..

The critical algebraic points which are branch points of the solution
are the only singular points that the solutions of the algebraic equa-

tion in this case can have; the existence of poles i1s excluded by the
requirement that :° be finite.
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converges and represents an analytic function for all p for which the
o

resultant R(f, f') retains the sign which it has when p = u°.
Other parameters on which the coefficients of the equation might de-

pend must be considered as fixed quantities. Such parameters may be, in

particular, the coefficients themselves. It is desirable to select for

u° a value that will simplify as much as possible the evaluation of 2.
We shall now demonstrate the described procedure on an example in-
volving the cubic equation
Blprtg=0
Considering ¢ as a parameter, and starting out from its zerc value,
we obtain
7 g '
az~;—7—3ﬂ+“
S 3 V=% 1 ¢¢ 1w05¥VIp
a=V=ptg g og T o O
yeel 3VoR  le Ve,
Zgz= — ¥ —p 9p g IS T — 2 P 128~ p° i
The series converge when R(f, f') = - 4p3 + 2"1q2 <0, p> 0 (or else

when - 4p3 + 27q2 >0, p < 0). The convergence takes place faster if the
inequality pR > 0 is satisfied with a greater margin.

3. In one of the more effective procedures for evaluating the roots
of an algebraic equation, the method of Lobachevskii, it is necessary to
compute the symmetric functions of the powers of the roots in terms of
the coefficients of the equation. For this purpose there is usually
suggested an algorithmic process, which leads, however, to a rather com-
plicated result.

Making use of the recurrence relations of Newton, one can prove the
validity of the following simple matrix representations for the required
symmetric functions.

For a second degree polynomial one has

(!1100 ii!gali |
200 a7 1 O . . . i(} as @y - - -
MM =0 eqayt ..}, MERE =10 0 as. . .
0 0 agay. . .4 b
........ k ' &

For a third degree polynomial one obtains
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{31'1 0‘{)"" &g Qs Ay« -
3 Zag {111 0 ... N o oo
3 v Q3 @3 .«
2 AF —iBagasart . .. M AN =
‘ i 00 a. . .
Je=1 0 agag @y . - - i
......... s
. ;:éllii}.‘.} {535231"~;
St kK osgsa1 R 0“"““"‘{
2 MM =0 saa - g g g, L
t=j 0 0 agas. .
e e e £ k-t

ay 1 0
A Zag ay 1 0o .
23 Y O A
7
=1 RG, lpey In—g n-g-
0 an an—& Gn—g - &

(The subscript indicates the order of the determinants.)

The easily recognized forms of the above given determinants indicate
how one can obtain more general results for nth degree polynomials.
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